A Brief History of the Minor Groove Binders (MGBs)

Authors

  • Ali M. Salim Chemistry Department, Faculty of Science, Sirte University, Sirte, Libya
  • Abdalnaser Taher Ahmed 1. Chemistry Department, Faculty of Science, Sirte University, Sirte, Libya
  • Alaa Al-Emeedy Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq
  • Abedawn I. Khalaf Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, UK
  • Attohami Hasan Ommar Chemistry Department, Faculty of Science, Sirte University, Sirte, Libya

DOI:

https://doi.org/10.63359/gdq44y80

Keywords:

Minor Groove Binders, Distamycin, Netropsin, Lexitropsins, antibiotics, Cryptococcus neoformans, Mycobacterium tuberculosis, cryptococcal meningitis

Abstract

The two naturally occurring polyamide heterocycles Distamycin and Netropsin belong to a group of heterocyclic compounds called Lexitropsins. These compounds exhibit their activity by binding to the minor groove of the DNA. These minor groove binders MGBs have several biological activities such as anticancer, antibiotics, and anti-parasitic qualities. Over the years several research groups have modified these compounds by replacing the pyrrole groups by other heterocyclic compounds and many other modifications have been employed to both the tail group and the head group. These gave rise to compounds with different biological activities.

References

Alniss, H. Y. N. G. Anthony, A. I. Khalaf, S. P. Mackay, C. J. Suckling, R. D. Waigh, N. J. Wheate, J. A. Parkinson, Chem. Sci., 2012, 3, 711–722. http://dx.doi.org/10.1039/C2SC00630H

Alsaadi M, Italia JL, Mullen AB et al. The efficacy of aerosol treatment with non-ionic surfactant vesicles containing amphotericin B in rodent models of leishmaniasis and pulmonary aspergillosis infection, J. Control Release 2012; 160: 685–91.

An evaluation of Minor Groove Binders as anti-fungal and anti-mycobacterial therapeutics, Fraser J. Scott, Ryan J.O. Nichol, Abedawn I. Khalaf, Federica Giordani, Kirsten Gillingwater, Soumya Ramu, Alysha Elliott, Johannes Zuegg, Paula Duffy, Michael-Jon Rosslee, Lerato Hlaka, Santosh Kumar, Mumin Ozturk, Frank Brombacher, Michael Barrett, Reto Guler, Colin J. Suckling, European Journal of Medicinal Chemistry, 2017, 136, 561-572. http://dx.doi.org/10.1016/j.ejmech.2017.05.039

An Overview of the Optical and Electrochemical Methods for Detection of DNA – Drug Interactions, M. M. Aleksi, V. Kapetanovi, Acta Chim. Slov., 2014, 61, 555–573.

Anthony, N. D. Breen, G. Donoghue, A. I. Khalaf, S. P. Mackay, C. J. Suckling, Org. Biomol. Chem. 2009, 7, 1843–1850. http://dx.doi.org/10.1039/b901898k

Anthony, N. D. Breen, J. Clarke, G. Donoghue, A. Drummond, E. Ellis, C. Gemmell, J. J. Helesbeux, I. Hunter, A. I. Khalaf, S. Mackay, J. Parkinson, C. J. Suckling, R. D. Waigh, J. Med. Chem. 2007, 50, 6116–6125. http://dx.doi.org/10.1021/jm070831g

Antimicrobial Lexitropsins Containing Amide, Amidine, and Alkene Linking Groups, Nahoum Anthony, David Breen, Joanna Clarke, Gavin Donoghue, Allan Drummond, Elizabeth Ellis, Curtis Gemmell, Jean-Jacques Helesbeux, Iain Hunter, Abedawn I. Khalaf, Simon Mackay, John Parkinson, Colin J. Suckling, Roger D. Waigh, Journal of Medicinal Chemistry, 2007, 50, 6116-6125. DOI: 10.1021/jm070831g

Antony, N. G. A. I. Khalaf, S. P. Mackay, J. A. Parkinson, C. J. Suckling, R. D. Waigh, J. Am. Chem. Soc. 2004, 126, 11338–11349. http://dx.doi.org/10.1021/ja030658n

Antony, N. G. K. R. Fox, B. Johnston, A. I. Khalaf, S. P. Mackay, I. S. McGroary, J. A. Parkinson, G. G. Skellern, C. J. Suckling, R. D. Waigh, Bioorg. Med. Chem. Lett. 2004, 14, 1353–1356. http://dx.doi.org/10.1016/j.bmcl.2003.11.068

Arcamone, F., Penco, S., Orezzi. P.. Nicollela. V., and Pirelli, A. Structure and synthesis of distamycin A. Nature (London), 1964, 203, 1064-1065.

Auty, H.; Torr, S. J.; Michoel, T.; Jayaraman, S.; Morrison, L. J. Cattle trypanosomosis: the diversity of trypanosomes and implications for disease epidemiology and control. Rev. Sci. Tech. 2015, 34, 587−598.

Brown, L. J.M. Wolf, R. Prados-Rosales, A. Casadevall, Nat. Rev. Microbiol. 13 (2015) 620e630 http://dx.doi.org/10.1038/nrmicro3480.

Carter KC, Mullen AB, Sundar S, Kenney RT. Efficacies of vesicular and free sodium stibogluconate formulations against clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 2001; 45: 3555–9.

Di Marco, A., Gaetani, M., Orezzi, P., Scotti, T., and Arcamone, F. Experimental studies on distamycin A. A new antibiotic with cytotoxic activity. Cancer Chemother Rep., 1962, 18, 15-19.

Evaluation of Minor Groove Binders (MGBs) as novel anti-mycobacterial agents, and the effect of using non-ionic surfactant vesicles as a delivery system to improve their efficacy, Lerato Hlaka, Michael-Jon Rosslee, Mumin Ozturk, Santosh Kumar, Suraj P. Parihar, Frank Brombacher, Abedawn I. Khalaf, Katharine C. Carter, Fraser Scott, Colin Suckling, Reto Guler, Journal of Antimicrobial Chemotherapy, 2017, 72(12), 3334-3341.https://doi.org/10.1093/jac/dkx326

Fishleigh, V. R. K. R. Fox, A. I. Khalaf, A. R. Pitt, M. Scobie, C. J. Suckling, J. Urwin, R. D. Waigh, C. S. Young, J. Med. Chem. 2000, 43, 3257–3266.http://dx.doi.org/10.1021/jm990620e

Gaidukevich SK, Mikulovich YL, Smirnova TG et al. Antibacterial effects of liposomes containing phospholipid cardiolipin and fluoroquinolone levofloxacin on Mycobacterium tuberculosis with extensive drug resistance. Bull. Exp. Biol. Med. 2016; 160: 675–8

Giordani, F.; Morrison, L. J.; Rowan, T. G.; De Koning, H. P.; Barrett, M. P. The animal trypanosomiases and their chemotherapy: a review. Parasitology 2016, 143, 1862−1889.

Global Tuberculosis Report 2015. Geneva, Switzerland: WHO. http://www.who.int/tb/publications/global_report/gtbr15_main_text.pdf.

Global Tuberculosis Report 2016. Geneva, Switzerland:WHO. http://www.who.int/tb/publications/global_report/en/.

Grady, S. C.; Messina, J. P.; McCord, P. F. Population vulnerability and disability in Kenya’s tsetse fly habitats. PLoS Neglected Trop. Dis. 2011, 5, e957.

Gulbay BE, Gurkan OU, Yildiz OA et al. Side effects due to primary antituberculosis drugs during the initial phase of therapy in 1149 hospitalized patients for tuberculosis. Respir. Med. 2006; 100: 1834–42.

Gupta, S. P. P. Pandya, G. S. Kumar, S. Kumar: Indole Derivatives as DNA Minor Groove Binders: Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives. Editors: L. D. Khemani, M. M. Srivastava and S. Srivastava, 2012, 149–153. http://dx.doi.org/10.1007/978-3-642-23394-4

Hampshire, A. J. H. Khairallah, A. I. Khalaf, A. H. Ebrahimabadi, R. D. Waigh, C. J. Suckling, T. Brown, K. R. Fox, Bioorg. Med. Chem. Lett. 2006, 16, 3469–3474. http://dx.doi.org/10.1016/j.bmcl.2006.04.007

Hari BN, Chitra KP, Bhimavarapu R et al. Novel technologies: a weapon against tuberculosis. Indian J Pharmacol 2010; 42: 338–44.

Heymann, D.L. Cell 124 (2006)

Hughes JP, Rees S, Kalindjian SB et al. Principles of early drug discovery. Br. J. Pharmacol., 2011; 162: 1239–49.

Imran M, Shah MR, Ullah Fet al. Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of cefixime. Int. J. Pharm. 2016; 505: 122–32.

James, P. L. E. E. Merkina, A. I. Khalaf, C. J. Suckling, R. D. Waigh, T. Brown, K. R. Fox, Nucleic Acids Res., 2004, 32, 3410–3417. http://dx.doi.org/10.1093/nar/gkh666

Kennedy, A. R. A. I. Khalaf, A. R. Pitt, M. Scobie, C. J. Suckling, J. Urwin, R. D. Waigh, S. C. Young, Acta Crystallogr., Sect. C: Struct. Chem., 1999, C55 (7), ii IUC9900072 http://dx.doi.org/10.1107/S0108270199099199

Kennedy, A. R. A. I. Khalaf, C. J. Suckling, R. D. Waigh, Acta Acta Crystallogr., Sect. E: Crystallogr. Commun., 2004, 60, o1188–o1190. http://dx.doi.org/10.1107/S1600536804013984

Kennedy, A. R. A. I. Khalaf, C. J. Suckling, R. D. Waigh, Acta Acta Crystallogr., Sect. E: Crystallogr. Commun., 2004, 60, o1510–o1512. http://dx.d oi.org/10.1107/S1600536804019282

Kennedy, A. R. A. I. Khalaf, C. J. Suckling, R. D. Waigh, Acta Crystallogr., Sect. E: Crystallogr. Commun., 2000, 57, o832–o833. http://dx.doi.org/10.1107/S1600536801013058

Kennedy, A. R. A. I. Khalaf, C. J. Suckling, R. D. Waigh, Acta Crystallogr., Sect. E: Crystallogr. Commun., 2003, 59, o1410–o1412. http://dx.doi.org/10.1107/S1600536803018828

Khalaf, A. I. A. R. Pitt, C. J. Suckling, M. Scobie, J. Urwin, R. D. Waigh, R. V. Fishleigh, S. C. Young, K. R. Fox, J. Chem. Research (S), 2000, 264–265; J. Chem. Research (M), 2000, 751–770. http://dx.doi.org/10.3184/030823400103167444

Khalaf, A. I. A. H. Ebrahimabadi, A. J. Drummond, N. G. Anthony, S. P. Mackay, C. J. Suckling, R. D. Waigh, Org. Biomol. Chem. 2004, 2, 3119–3127. http://dx.doi.org/10.1039/B408386P

Khalaf, A. I. A. J. Drummond, B. Pringle, I. McGroarty, G. G. Skellern, R. D. Waigh, C. J. Suckling, J. Med. Chem. 2004, 47, 2133–2156. http://dx.doi.org/10.1021/jm031089x

Khalaf, A. I. A. R. Pitt, C. J. Suckling, M. Scobie, J. Urwin, R. D. Waigh, R. V. Fishleigh, S. C. Young, K. R. Fox, Tetrahedron, 2000, 56, 5225–5239. http://dx.doi.org/ 10.1016/S0040-4020(00)00432-4

Khalaf, A. I. Curr. Trends Med. Chem., 2009, 6, 53–63.

Khalaf, A. I. J. A. Parkinson, C. J. Suckling, N. G. Anthony, J. J. Helsebeux, S. P. Mackay, R. D. Waigh, K. R. Fox, Drug. Future, 2004, 29 (suppl. A), 159.

Khalaf, A. I. Minor Groove Binders: Some recent research in drug development, Current Trends in Medicinal Chemistry, 2009, 6, 53-63.

Khalaf, A. I., Al-Kadhimi, A. A. H., Ali, J. H., 2016. DNA Minor Groove Binders-Inspired by Nature, Acta Chimica Slovenica, 63, 689–704. DOI: 10.17344/acsi.2016.2775

Khan, G. S. L. I. Pilkington, D. Barker, Synthesis and biological activity of benzamide DNA minor groove binders, Bioorg. Med. Chem. Lett. 2016, 26, 804–808. http://dx.doi.org/10.1016/j.bmcl.2015.12.090

Kumar GP, Rajeshwarrao P.Nonionic surfactant vesicular systems for effective drug delivery—an overview, Acta Pharmaceutica Sinica B 2011; 1: 208–19

Mehta SK, Jindal N. Tyloxapol niosomes as prospective drug deliverymodule for antiretroviral drug nevirapine. AAPS PharmSciTech 2015; 16: 67–75.

Murray S, Mendel C, Spigelman M. TB Alliance regimen development for multidrug-resistant tuberculosis. Int. J. Tuberc. Lung. Dis. 2016; 20: 38–41.

Mwaba P, McNerney R, Grobusch MP et al. Achieving STOP TB Partnership goals: perspectives on development of new diagnostics, drugs and vaccines for tuberculosis. TropMed Int Health 2011; 16: 819–27.

Netropsin, a New Antibiotic Produced by a Streptomyces, A.C. Finlay, F. A. Hochstein, B. A. Sobin, and F. X. Murphy, J. Am. Chem Soc., 1951, 73, 341-343. DOI/abs/10.1021/ja01145a113

Nieto J, Alvar J, Mullen AB et al. Pharmacokinetics, toxicities, and efficacies of sodium stibogluconate formulations after intravenous administration in animals. Antimicrob Agents Chemother 2003; 47: 2781–7.

Parkinson, J. A. A. I. Khalaf, N. G. Anthony, S. P. Mackay, C. J. Suckling, R. D. Waigh, Helv. Chim. Acta, 2009, 92, 795–822. http://dx.doi.org/10.1002/hlca.200800390

Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug. Deliv. Rev., 2013; 65: 1803–15.

Pelton, J. G. D. E. Wemmer, Binding modes of distamycin A with d (CGCAAATTTGCG) 2 determined by two-dimensional NMR, J. Am. Chem. Soc. 1990, 112, 1393–1399. http://dx.doi.org/10.1021/ja00160a016

Salvia, M. V. F. Addison, H. Y. Alniss, N. J. Buurma, A. I. Khalaf, S. P. Mackay, N. G. Anthony, C. J. Suckling, M. P. Evstigneev, A. H. Santiago, R. D. Waigh, J. A. Parkinson, Biophys. Chem., 2013, 179, 1–11. http://dx.doi.org/10.1016/j.bpc.2013.04.001

Smith, K.D. B. Achan, K.H. Hullsiek, T.R. McDonald, L.H. Okagaki, A.A. Alhadab, A. Akampurira, J.R. Rhein, D.B. Meya, D.R. Boulware, K. Nielsen, on behalf of the ASTRO-CM/COAT Team, Antimicrob. Agents Chemother. 59 (2015) 7197-7204

Sohrabi S, Haeri A, Mahboubi A et al. Chitosan gel-embedded moxifloxacin niosomes: an efficient antimicrobial hybrid system for burn infection. Int. J. Biol Macromol. 2016; 85: 625–33

Suckling, C. J. Chem. Biol. Interface, 2015, 5, 166–174.

The structure of antibiotic t-1384. Synthesis of the degradation fragments, Martin J. Weiss, John S. Webb, and James M. Smith Jr., J. Am. Chem. Soc., 1957, 79 (5), 1266–1266. DOI: 10.1021/ja01562a068

Treesuwan, W. K. Wittayanarakul, N. G. Anthony, G. Huchet, H. Alniss, S. Hannongbua, A. I. Khalaf, C. J. Suckling, J. A Parkinson, R. D. Waigh, S. P. Mackay, Phys. Chem. Chem. Phys., 2009, 11, 10682–10693. http://dx.doi.org/10.1039/b910574c

Vafazadeh, R. N. Hasanzade, M. M. Heidari, A. C. Willis, Acta Chim. Slov., 2015, 62, 122–129. http://dx.doi.org/10.17344/acsi.2014.797

Williams D, Mullen AB, Baillie AJ, Carter KC. Comparison of the efficacy of free and non-ionic-surfactant vesicular formulations of paromomycin in a murine model of visceral leishmaniasis. J PharmPharmacol 1998; 50: 1351–6.

Zumla, A., Abubakar, I., Raviglione, M. et al. Drug-resistant tuberculosis-current dilemmas, unanswered questions, challenges, and priority needs. J. Infect. Dis. 2012; 205 Suppl 2: S228–240.

Downloads

Published

31-12-2020

How to Cite

A Brief History of the Minor Groove Binders (MGBs) . (2020). Libyan Journal of Ecological & Environmental Sciences and Technology, 2(2), 55 – 65. https://doi.org/10.63359/gdq44y80

Similar Articles

1-10 of 20

You may also start an advanced similarity search for this article.