

المجلة الليبية لعلوم وتكنولوجيا البيئة

Libyan Journal of Ecological & Environmental Sciences and Technology(LJEEST)

DOI: https://doi.org/10.63359/jk74a380

تقييم جودة المياه الجوفية لأغراض الشرب باستخدام مؤشر جودة المياه في مدينة صبراتة ليبيا

 2 آلاء البشير الغرابلي 1 ، حنين عبدالمجيد والي 1 ، عبد الناصر ابوعجيلة الزهاني 1 ، حمزه محمد فليفل 1 , العاقلة عبد الله الحمودي

ARTICLE INFO

Vo3 No. 2 Dec. 2021

Pages A-(38 - 43)

Article history:

Received 30 October 2021 Accepted 04 December 2021

Authors affiliation

1 Libyan Center for Studies and Research of Environmental Science and Technology

2 Sciences Department,, University of Sabratha, Sabratha, Libya alaa.algharably@gmail.com

Keywords:

Groundwater, Water Quality Index (QWI), Libyan Standard Specifications, Sabratha-Libya

© 2021 Content on this article is an open access licensed under creative commons CC BY-NC 4.0

الملخص

استهدفت هذه الدراسة الى تقييم جودة المياه الجوفية في بمدينة (صبراتة) ومدى صلاحيتها للشرب وذلك بتطبيق مؤشر جودة المياه (MQI) لعدد (PQI) لعدد واقع إحداثيات الآبار علي خريطة التوزيع المكاني لها داخل المدينة تم اخذ في الاعتبار إحدى عشر عنصرا من المتغيرات لتحديد (PQI) معامل جودة المياه (PQI) المتمثلة في (PQI) المتمثلة في (PQI) المتمثلة في (PQI) المتمثلة وفي منطقة الدراسة اعتماد على المواصفات الليبية القياسية لسنة (PQI). اظهرت (PQI) المتاتج ان قيم معامل جودة المياه التي تم الحصول عليها متفاوتة من رديئة إلى غير ملائمة باستثناء (PQI) آبار كانت قيم معامل جودة المياه (PQI) المياه كانت جيدة للشرب.

Assessment Of Groundwater Quality For Drinking By Water Quality Index (WQI) In Sabratha City, Libya

Alaa Albasheer Algharably, Haneen Abdulmaajid Bin Wali, Abduanaser A Ali Ezhani, Hamza Mohamed Flafel, Alaqilh Ahmed Alhamoudi

Consumers are reacting with water quality problems by using household wells, which is the only water source available in this city. Therefore, this study was conducted in Sabratha city with the major objective of assess suitability of groundwater quality for drinking purposes through water quality index (WQI) investigations. Water samples were collected from (48 wells) in different locations of the city by using GPS to locate the coordinates of wells in May 2016. For calculating WQI, eleven parameters have considered such as: EC, pH , TDS, Cl^- , HCO_3^- , SO_4^{-2} , NO_3^- , Ca^{+2} , Mg^{+2} , Na^+ , K^+ . The suitability of groundwater in the study area for human consumption purpose is achieved by WQI according to the guideline values of Libyan Standard Specifications (2011). The results showed that the water quality index for wells samples were varying from unsuitable to good, only seven wells, the water quality coefficient values were good for drinking.

المقدمة

في الأرض، اذ يشير توزيع المياه في العالم إلى أن 2.5٪ و97.5٪ فقط تشكلان مياه عنبة ومياه مالحة على التوالي. 2.5٪ من المياه العذبة والمياه السطحية والجوفية في العالم لها تمثيلات 0.4٪ و30.1٪ على التوالى (Gleick, et al., 1996).

قال تعالى (أفرايتم الماء الذي تشربون) يعتبر الماء أساس الحياة، حيث أنه مهم جدا في جميع أنشطة الإنسان المختلفة (عبد العزيز، 2007). وهو من أكثر الموارد الموجودة بوفرة

الشكل(1): منطقة الدراسة (صبراتة) ومواقع اخذ العينات.

تم استخدام نتائج هذه العينات لحساب مؤشر جودة المياه (WQI) وتصنيفها تبعا لقيم مؤشر جودة المياه ما إذا كانت صالحة للشرب، ومن ثم تم تحديد مواقع الآبار على خريطة التوزيع المكاني وفقا لجودة مياهها.

اعتمدت منهجية هذه الدراسة على تحديد جودة المياه بواسطة أحد عشر بارامتر (مقاييس) فيزيائية وكيميائية، حيث أعطى لكل بارامتر وزن معين تتراوح قيمته من (1-5)، وأعطى الوزن 5 لكلا من أيون الكبريتات وأيون الكلوريد وأيون النترات والأملاح الكلية الذائبة وذلك بسبب أهميتها في تقييم جودة المياه، أما بالنسبة لأيون البوتاسيوم فهو يلعب دورا غير مهم في تقييم جودة المياه لهذا أعطى له الوزن (1) و الجدول (1) يوضح اوزان البارامترات حسب المواصفات القياسية الليبية (Semiromi, 2011).

جدول (1): المواصفات القياسية الليبية والقيم المخصصة والأوزان النسبية اللازمة لحساب معامل جودة المياه

Parameters (mg/l)	Libyan Standard	Assigned Weight(wi)	Relative Weight(<i>Wi</i>)
PH	7.5	2	0.051
EC	1600	3	0.0769
TDS	1000	5	0.128
Ca ⁺²	200	3	0.0769
\mathbf{Mg}^{+2}	150	3	0.0769
Na^+	200	4	0.102
\mathbf{K}^{+}	40	1	0.025
HCO ₃ -	200	3	0.0769
CL-	250	5	0.128
SO_4^{-2}	250	5	0.128
NO_3^-	45	5	0.128
		$\sum_{i} = 39$	0.997 ≈ 1

وقد تم تعيين معامل جودة المياه حسب الخطوات الآتية (جمعة الجالي 2015): وحدة الوزن النسبي: وهي الأهمية النسبية لكل مقياس (محدد) من مقاييس جودة المياه بناء على وزن كل متغير ويتم حسابها من خلال المعادلة الآتية: تعتبر المياه الجوفية المصدر الأساسي للمياه في ليبيا، وذلك لانعدام أي مورد سطحي دائم نتيجة انخفاض معدلات هطول الأمطار وتذبذبها، اذ تشكل المياه الجوفية حوالي 95% من الموارد المائية المستغلة فهي تتمتع بالعديد من الخصائص التي تجعلها أفضل من المياه السطحية التي تكون دائما عرضة للتلوث (الشكل، 2017).

كما انها تعد من أكثر الموارد الطبيعية شعبية للأنشطة البشرية كالشرب، الاستخدامات المنزلية والصناعية والبناء والري (بوجليدة، 2007). تعتبر نُدرة المياه أحد أكثر المشاكل الجوهرية في منطقة الشرق الأوسط وشمال افريقيا. فالشرق الأوسط وشمال افريقيا موطن 6,3 % من سكان العالم، ولكنة لا يمتلك سوى ما نسبته 1,4% من موارد المياه العذبة المتجددة, Zafar (2014. إذ تعد الأنشطة البشرية السبب الرئيسي لتلوث مصادر المياه الجوفية مما يجعلها غير صالحة للاستعمال البشري (العبدلي وأخرون ، 2020). وباعتبار أن المياه الجوفية تشكل موردا من الموارد الطبيعية المهمة فإن استغلالها بصورة غير عقلانية أو عدم حمايتها من التلوث يؤدي إلى تراجع كميتها ونوعيتها مما يؤثر سلبا على الموارد الاقتصادية والبيئية أجريت العديد من الدراسات في ليبيا وبلدان اخرى من قبل الباحثين تتعلق بنوعية المياه الجوفية وصلاحيتها للشرب والاغراض المنزلية. إلا أن أغلب الدراسات في ليبيا لا تركز على استخدام مؤشر جودة المياه ,WHO).

يعتبر مؤشر جودة المياه ذو فاعلية عالية لنقل معلومات جودة المياه بأبسط أشكالها إلى الجمهور اذ يتم حساب مؤشر جودة المياه اعتمادًا على أحد عشر معيارًا (Semiromi, 2011). إن تقييم جودة المياه الجوفية يعتبر ذو أهمية بالغة لضمان الاستخدام الامن للمياه، وذلك يتأتى باستخدام مؤشر جودة المياه المعروف باختصار (WQI) اذ يمكن بواسطته التعبير عن نوعية الموارد المائية فيما إذا كانت صالحة للشرب (عبد العزيز وأخرون، 2019). من خلال مجموعة من المحددات أو المقاييس التي يمكن أن تستعمل لتحديد الجودة الكلية للمياه وهو أساسا عبارة عن صيغة رياضية لحساب قيمة منفردة لقياسات واختبارات متعددة لتعطى معاملا يعبر عن جودة المياه الجوفية للأغراض الشرب (الجالي، 2015). وبناء على مما سبق اجريت هذه الدراسة بهدف حساب معامل جودة المياه الجوفية لتحديد مدى ملائمتها للشرب.

المواد والطرق

منطقة الدراسة: اقتصرت الدراسة على منطقة صبراتة الواقعة ضمن القسم الشمالي الغربي من ليبيا على بعد (75 كم) غرب العاصمة طرابلس و(42 كم) شرق مدينة زوارة إذ يحدها شمالا البحر المتوسط، وبلدية صرمان شرقا وبلديتي صرمان والعجيلات جنوبا وبلدية العجيلات وزوارة والجميل غربا (الضويلع، 2019).

جمعت العينات باستخدام قناني البولي اثيلين النظيفة في سنه 2016 لعدد 48 بئراً موزعة على مناطق مختلفة بالمدينة وتم نقل العينات الى مختبر المياه بصبراتة لتحليل حيث اجريت القياسات على البارامترات والمتمثلة في:

تركيز الأملاح الكلية الذائبة، الموصلية الكهربائية، تركيز الأس الهيدروجيني وكذلك تركيز عدد من الأيونات الذائبة ($HCO_3^-, Cl^-, SO_4^{-2}, Na^+, Mg^{+2}, Ca^{+2}.$ ، $NO_3^-)$ كما موضح في الجدول (1). حيث تم قياس هذه المعالم بواسطة كلا من:

pH meter, TDS mater Ag NO3 titrimetric for Chloride, spectrophotometry for nitrate, Sulfate, EDTA titrimetric for Magnesium ,Calcium. Phenolphthalein and Methyl orange titrimetric for alkalinity and flame photometer for Sodium, .. (الحمودي، Potassium (2016)

جدول (2) : تصنيف جودة المياه بناء على مؤشر جودة المياه (عبد العزيز واخرون (2019)

Range	Type Of Water
< 50	Excellent Water
50 - 100	Good Water
200 - 100	Poor Water
300 - 200	Very Poor Water
>300	Water Unsuitable

1. الوزن النسبي ويتم حسابه كما في المعادلة الآتية

$$W_i = rac{wi}{\sum_{l=1}^n wi}$$
 الوزن النسبي لكل متغير ا

wi = وزن کل متغیر **n** = عدد المتغيرات

2. معدل تصنيف الجودة: يعتمد على تركيز كل متغير وعلى القيمة الموصى بما لكل متغير ويتم حسابه كما في المعادلة الآتية

$$\mathrm{Qi} = \left(rac{\mathrm{Ci}}{\mathrm{Si}}
ight)*100$$
 معدل تصنیف الجودة Qi

Ci = ترکیز کل متغیر

القيمة الموصى بما لكل متغير Si

3. معامل جودة المياه: يتم حسابه من خلال المعادلة الآتية:

$$WQI = \sum_{i=1}^n (\ Wi * Qi\)$$
 معامل جودة المياه $\$

ويتم مقارنة القيم المحسوبة بقيم مؤشر جودة المياه الموضحة بالجدول (2).

النتائج المناقشة

الجدول رقم (3) يوضح النتائج المتحصل عليها من خلال التحاليل الكيميائية والفزيائية لعينات مياه آبار منطقة الدراسة. تم تقييم جودة المياه الجوفية في منطقة الدراسة حسب المواصفات القياسية الليبية لسنة 2011 م. أظهرت النتائج ان تركيزات قيم معظم المتغيرات كانت مرتفعة عن الحدود المسموح بما في اغلب الابار موضع الدراسة ماعدا تركيزات أيون الهيدروجين (pH) حيث انها كانت ضمن الحدود المسموح بما لمياه الشرب حسب المواصفات القياسية الليبية لجميع الابار، هذه النتائج مماثلة لدراسة التي قام بما (عبد العزيز واخرون، 2019) كانت نتائج قيم تركيزات الاملاح والايونات الرئيسية في المياه الجوفية بمدينة صرمان مرتفعة في معظم عينات

جدول (3) نتائج قيم ومتوسط الخصائص الفيزيائية والكيميائية لعينات مياه الآبار الجوفية في منطقة الدراس

TDs	EC	pН	NO ₃ -	HCO ₃ -	CI-	SO ₄ ² -	Na ⁺	K +	$\mathbf{M}\mathbf{g}^{+2}$	Ca ⁺²	Well
2670	4180	7.00	1.230	559	575	504	378	7.6	222	416	W 1
3320	5200	7.33	0.360	186	618	1152	491	12.7	333	520	W 2
1570	2450	7.40	1.270	198	823	321	282	8.1	105	168	W 3
3400	5330	7.20	2.470	285	1008	765	662	26	210	440	W4
2910	4560	7.40	9.00	223	809	673	550	20.1	200	400	W 5
1540	2402	7.37	0.09	161	419	389	281	7.20	95.32	176.1	W 6
1530	2400	7.27	0.05	198	276	435	283	6.70	104.8	208.1	W7
2300	3600	7.20	0.04	186	575	615	397	8.4	181.1	328.2	W8
2020	3160	7.36	0.01	223	397	575	336	7.10	209.7	240.2	W9
2140	3350	7.04	0.03	223.5	390	652	319	10.10	214.4	328.2	W10
2400	3760	7.07	0.02	211	582	624	394	10.8	171.5	400.3	W11
3940	6170	7.11	0.02	180	965	1223	642	10.8	371.7	544.4	W12
2230	3500	7.10	0.29	223	383	715	338	6.4	157.2	400.3	W13
1530	2397	7.27	0.01	223.5	468	259	285	6.4	104.8	176.3	W14
1510	2358	7.16	0.01	198.6	383.4	312	265	6.7	119.1	168.3	W15
1282	2040	7.28	0.01	223	390	205	245	6	81.0	128	W16

تقييم جودة المياه الجوفية لأغراض الشرب باستخدام مؤشر جودة المياه في مدينة صبراتة - ليبيا

W17	176	285	8.1	359	695	568	223	0.00	7.08	3620	2320
W18	176	119	8	371	372	617	211	0.01	7.42	2935	1880
W19	144	66.7	5.5	212	220	376	198	0.01	7.34	1929	1232
W20	144	104.7	7	305	263	468	211	0.01	7.26	2362	1510
W21	160.3	114	8.9	295	311	539	211	0.03	7.32	2572	1650
W22	641.2	309	27.7	227	1835	1674	310	0.00	6.85	7350	4710
W23	280	243	8.3	403	628	951	260	0.02	7	4380	2780
W24	184	128	8.2	411	278.9	752	235	0.00	7.2	3140	2000
W25	368	181	12.6	466	2168	1121	211	0.014	7.1	4690	4530
W26	256	152	9.5	334	465	518	248	0.010	7.1	3120	1990
W27	641	324	26	776	1047	1661	310	1.7	6.9	7550	4790
W28	240	138	6.5	340	442	582	235	4.0	7.10	3130	2000
W29	240	142	8.5	290	400	489	223	2	7.2	2821	1080
W30	344	147	7.4	496	418	1143	223	3	7.3	4350	2790
W31	264	163	7.4	397	485	837	136	0.00	6.9	3600	2300
W32	200	96	8.3	344	208	703	211	0.00	7.20	2772	1780
W33	48	57	4.2	391	127	347	211	0.070	7.30	1855	1189
W34	112	48	5.3	174	147	333	322	0.030	7.40	1493	951
W35	184	76	10	476	137	674	235	0.010	7.20	2818	1790
W36	272	148	15	515	446	617	248	0.010	7.10	3540	2270
W37	96	38.4	4.8	174	43	283	198	0.010	7.4	1315	841
W38	128	57.6	5.8	222	81	357	198	0.010	7.4	1655	1060
W39	104	28.8	3.9	111	68.8	200	223	0.010	7.5	1118	715
W40	240	238	20.0	1709	1124	2584	310	0.00	7.2	9733	6230
W41	152	81.02	9	354	293	660	235	0.00	7.3	2788	1790
W42	144	95.3	12	477	249	816	211	0.002	7.5	3270	2010
W43	304	185	25	1685	454	2485	322	0.00	6.9	8510	5460
W44	472	271	25	1946	215	3266	620	0.00	7.3	4350	6820
W45	520	290	34	947	261	2982	496	0.01	7.3	4200	6140
W46	184	147	9	282	162	1136	496	0.009	7.4	3320	2120
W47	136	76	10	531	301	1278	496	0.00	7.2	3960	2530
W48	1040	581	203	6707	2225	1221	620	0.003	6.9	8700	13600

19، 33، 34، 37، 38، 39) فهي صنفت من المياه الجيدة للشرب حسب مؤشر جودة المياه، تم العثور على نتائج مماثلة في دراسة أجريت في مدينة صرمان حيث كانت اغلب نتائج

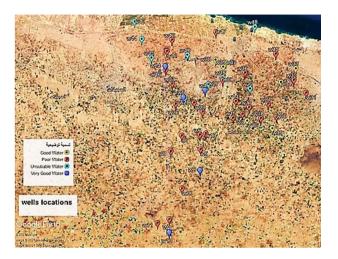
جدول (4) يبين وجود تفاوت في تصنيف معامل جودة المياه، حيث نلاحظ أن جميع العينات تتراوح بين المياه الرديئة والمياه الغير ملائمة للاستهلاك البشري عدا عينات الآبار رقم (16،

عينات مياه الابار غير ملائمة الى رديئة ماعدا عدد أربع ابار صنفت جيدة للشرب حسب مؤشر جودة المياه (عبد العزيز واخرون، 2019).

جدول (4): تصنيف الابار حسب معامل مؤشر جودة مياه في مدينة صبراتة

Well	WQ	Type of	Well	WOI	Type of	
NO	I	Water	NO	WQI	Water	
1	183	poor	25	309	Unsuitable	
2	233	Very poor	26	140	Poor	
3	130	Poor	27	335	Unsuitable	
4	239	Very poor	28	142	Poor	
5	206	Very poor	29	118	Poor	
6	110	Poor	30	197	Poor	
7	.108	Poor	31	163	Poor	
8	162	Poor	32	126	Poor	
9	141	Poor	33	86	Good	
10	150	Poor	34	77	Good	
11	168	Poor	35	127	Poor	
12	277	Very poor	36	160	Poor	
13	156	Poor	37	61	Good	
14	108	Poor	38	76	Good	
15	105	Poor	39	53	Good	
16	92	Good	40	443	Unsuitable	
17	165	Poor	41	127	Poor	
18	133	Poor	42	144	Poor	
19	88	Good	43	387	Unsuitable	
20	108	Poor	44	478	Unsuitable	
21	117	Poor	45	400	Unsuitable	
22	345	Unsuitable	46	163	Poor	
23	196	poor	47	193	Poor	
24	277	Very poor	48	967	Unsuitable	

الشكل(2) يوضح التوزيع المكاني لمواقع (48) بئرا التي تم اختبارها وحساب معامل جودة المياه لكل منها داخل المدية مصنفه حسب مؤشر جودة المياه.


وتخلص نتائج الدراسة ان تراكيز الأملاح والأيونات الرئيسية في المياه الجوفية لمنطقة الدراسة مرتفع، كذألك معظم معايير المياه كنت اعلى من الحدود المسموح بما لمعايير منظمة الصحة العالمية. الجدول (4) بوضح ارتفاع نسب مؤشر جودة المياه(WQI) والتي تجاوزت الجدود المسموح بما. حيث كانت نتائج عينات مياه الآبار بالمدينة متباينة بين غير صالحة للشرب الى رديئة ماعدا عينات الآبار (W34 ،W34 ،W35 ، W19،W16 ، W37 ،W34 ،W35 ، W19،W16 ، W39) كانت جيدة للشرب وللأغراض المنزلية.

من خلال النتائج التي تحصلنا عليها ينصح ب:

1-أن تخضع المياه الجوفية للمراقبة الدورية.

2-تفعيل دور المصادر الغير تقليدية كتحلية المياه والمياه المعالجة واستعمالها كبدائل للمياه الجوفية وذلك لتعويض العجز المائي والحفاظ على جودته.

3-التثقيف الصحى والتوعية للمواطنين للحفاظ على المياه وحمايتها من التلوث. 4-مواصلة العمل في هذا المجال نظرا لأهميته الكبيرة.

شكل (2): التوزيع المكاني لتصنيف قيم معامل جودة المياه آبار مدينة صبراتة.

المراجع:

هشام فوزى عبد العزيز (2007). 1987م-1999 مشروع أنابيب مياه السلام التركي والمواقف العربية منه.

انتصار بوجليدة (2007). تقييم جودة المياه الجوفية بمنطقة صرمان / المؤتمر العلمي الثالث لجامعة النجع الساطع / ليبيا.

انتصار محمد على الضويلع (2019). التوزيع الجغرافي للخدمات الصحية في منطقة صبراتة . ليبيا دراسة في جغرافية الخدمات. مجلة البحث العلمي في الآداب, 20(العدد العشرون الجزء الرابع), 446-405.

بوبكر العبدلي؛ محمد الدراوي العائب؛ عبد الحميد خليفة الزربي (2020). تقييم جودة المياه الجوفية بمنطقة برسس الجبل الأخضر -ليبيا / المجلة الليبية لعلوم وتكنولوجيا البيئة/ليبيا.

جمعة ارحومة جمعة الجالي (2015) تقييم جودة المياه الجوفية بتحديد معامل جودة المياه في منطقة درنة/ليبيا. منشورات علوم جغرافية العدد الرابع، الصفحات 155-165.

العاقلة عبد الله الحمودي (2016). تحديد بعض الخصائص الفيزيائية والكيميائية والبيولوجية للمياه الجوفية بمنطقة صبراتة رسالة ماجستير كلية الهندسة صبراتة.

عبد الرزاق مصباح عبد العزيز؛ خيري محمد العماري؛ على خير صابر (2019) تقييم جودة المياه الجوفية لأغراض الشرب باستخدام مؤشر جودة المياه في مدينة صرمان/ المجلة الليبية لعلوم وتكنولوجيا البيئة/ليبيا (LJEEST).

الهادي أحمد عبد الله الشكل (2017). دراسة مظاهرة تداخل مياه البحر في المياه الجوفية بمنطقة شمال غرب حوض سهل الجفارة الجوفي-ليبيا.

Gleick, P. H., & Schneider, S. (1996). Encyclopedia of climate and weather. Water Resources, 2, 817-823.

- WHO, World Health Organization. 2011. "Guidelines for drinking water quality". Geneva, Switzerland. Master Tree Grower Program. Melbourne, Australia.
- Zafar, S. (2014). Water scarcity in MENA. EcoMENA May 3, 2014.
- Semiromi, F. B., Hassani, A. H., Torabian, A., Karbassi, A. R., & Lotfi, F. H. (2011). Evolution of a new surface water quality index for Karoon catchment in Iran. Water Science and Technology, 64(12), 2483-2491.